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Abstract-A forn1ulation for computing first-order shape design sensitivities in two-dimensional
(2-D) linear elastostatics by the boundary contour method (BCM), along with a numerical
implementation using quadratic boundary elements, is presented in this paper. Here, the direct
differentiation approach is analytically applied to the appropriate boundary contour equations in
order to derive the sensitivities of all the physical quantities (displacements, tractions and stresses)
on the boundary as well as those for displacements and stresses inside the body under consideration.
The nonsingular formulation of the BCM is used for computing the boundary displacements, and
boundary stresses at "off contour" regular points. A regular boundary point is a point on the
boundary where it is locally smooth; an off contour point lies inside a boundary element. Their
corresponding sensitivities are obtained in a straightforward manner from the resulting regular
sensitivity formulation. Also, the stress sensitivities at the boundary nodes can be recovered easily
from the global displacement shape functions described in a Cartesian coordinate system. Finally,
through three numerical examples for which analytical solutions exist, it is shown that the BCM
can provide remarkably accurate numerical results for shape sensitivities. (g 1998 Elsevier Science
Ltd.

1. INTRODUCTION

The conventional boundary element method (BEM) for linear elasticity requires the numeri
cal evaluation of line integrals for two-dimensional (2-D) problems and surface integrals
for three-dimensional (3-D) ones [see, for example, Mukherjee (1982); Banerjee (1994)].
By observing that the integrand vector of this boundary integral equation (BIE) without
body forces is divergence free, Nagarajan et al. (1994, 1996) have proposed a novel
approach, called the BCM, that achieves a further reduction in dimension. The divergence
free property allows, for 3-D problems, the use of Stokes' theorem to transform surface
integrals on the usual boundary elements into line integrals on the bounding contours of
these elements. For 2-D problems, a similar transformation eliminates numerical integration
altogether. The above transformations are quite general and apply to boundary elements
of arbitrary shape. Thus, the BCM requires only numerical evaluation of line integrals for
3-D problems and simply the evaluation of functions (called potential functions) at points
on the boundary of a body for 2-D cases.

The BCM is a young method and further developments of this approach are under
way. A hypersingular BCM (HBCM) formulation for linear elasticity has been proposed
recently (Mukherjee and Mukherjee, 1997; Phan et al., 1997b). This formulation can
possibly be extended to solve fracture mechanics problems. It is pointed out in Nagarajan
et al. (1994) that the divergence free property of the BEM integrand holds true for other
linear problems besides potential theory and linear elasticity. Thus, in principle, it is possible
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to derive BCM formulations for other linear problems such as plate bending, transient
heat conduction with uniform initial temperature, and thermoelasticity; although such
formulations have not been derived yet. Finally, body forces that can be modeled as
particular integrals in the usual BEM [see, for example, Banerjee (1994)] can also be
modeled in the same way by the BCM. Thus, at least in principle, the BCM is a fairly
general approach for linear problems. The method, however, is not recommended for
nonlinear problems, since the primary advantage of a further reduction in dimension,
compared to the usual BEM, would, in general, be lost in these cases.

Most shape optimization problems employ mathematical programming methods where
design sensitivity coefficients (DSCs), which are defined as the rates of change of physical
response quantities with respect to changes in the design variables, are required for deter
mination of the optimum shape of a body.

Unlike the well-known finite element method (FEM), the boundary element method
(BEM) requires only discretization on the boundary of a body. This characteristic provides
significant advantages in its use in shape optimal design where mesh generation needs to
be redone after each iterative step ofthe optimization process. Therefore, several researchers
have used the BEM to develop efficient approaches for computing design sensitivities. The
reader is referred to a special issue of Engineering Analysis with Boundary Elements (Bui
and Bonnet, 1995) for a recent discussion of sensitivity analysis with the BEM. As in the
context of the FEM, there are three methods [e.g. Haug et al. (1986); Sokolowski and
Zolesio (1992)], namely, the finite difference approach (FDA), the adjoint structure
approach (ASA) and the direct differentiation approach (DDA).

Besides having the same advantage in mesh generation as for the conventional BEM,
the BCM offers a further reduction in dimension, and especially, a nonsingular formulation
for computing boundary displacements and boundary stresses at regular points inside a
boundary element [see Phan et al. (I997a)]. Moreover, the stresses at boundary nodes can
be recovered easily and exactly from the global displacement shape functions expressed in
Cartesian coordinates. These advantages of the BCM are expected to make it very com
petitive in optimal shape design.

To that purpose, this paper presents a formulation for computing first-order design
sensitivities based on a full development of the BCM for 2-D linear elasticity with quadratic
boundary elements which has been introduced by Phan et al. (1997a). In this paper, we
develop a formulation for design sensitivities by direct differentiation of the BCM equations,
i.e. by using the DDA. In the context of the BEM for elastostatics, the DDA has been used
by Barone and Yang (1988), Kane and Saigal (1988), Zhang and Mukherjee (1991), and
Mellings and Aliabadi (1995) for 2-D problems, by Saigal et al. (1989), and Rice and
Mukherjee (1990) for axisymmetric problems, by Aithal et al. (1991), Kane et al. (1992)
and Bonnet (1995) for 3-D bodies, and by Mukherjee and Chandra (1991), and Chandra
and Mukherjee (1997) for 2-D nonlinear problems.

The DDA may be applied either before or after discretization of the initial BIE. The
two processes are expected to lead to the same equations. Kane and Saigal (1988) generated
the desired DSCs by differentiating the resulting BEM system matrix analytically. In these
formulations, the authors have placed the source points outside the region to avoid singular
integrations. Barone and Yang (1988) carried out the opposite process by differentiating
the BIE to obtain the DSCs analytically before numerical integration. Here, the rigid body
motion technique has been employed to treat singular integral terms in the calculation of
displacement sensitivities, but the integration of strongly singular kernels is required in a
direct formula used in computing stress sensitivities. Zhang and Mukherjee (1991) overcame
this difficulty related to the singular feature of the governing HIE by using a 2-D elastic
BIE formulated in terms of tangential gradient of displacements where the sensitivity of
boundary stresses is recovered from the corresponding tractions and tangential gradients
ofdisplacements and their sensitivities. In order to avoid strongly singular integrals involved
in design sensitivity analysis, Bonnet (1995) applied the material derivative concept to the
regularized displacement boundary integral equation.

It can be seen from the above papers that most authors limit their calculations to
design sensitivities on the boundary of a body. The formulation described in this work
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includes the DSCs of all displacements and stresses throughout the domain of interest, i.e.
on the boundary as well as inside the body. DSCs are obtained from completely regularized
equations. There is no need to evaluate any singular integrals as in the BEM work of
Barone and Yang (1988). In fact, for 2-D linear elasticity, the BCM does not require the
numerical evaluation of any integral at all!

Three examples, including Lame, Kirsch and a plate with an elliptical cutout, are
solved and compared against analytical solutions. The numerical results are very accurate
for these illustrative examples.

2. 2-D BCM FORMULATIONS

The information presented in this section is summarized from Phan et al. (1997a)
where more details can be found.

2.1. Basic formulation
The idea of dimensional reduction starts from the standard boundary integral equation

(BIE) without body forces [see Rizzo (1967)]

C,k{P)Ui(P) = f [Uik{P, Q)O'ij(Q) - I.ijk(P, Q)ui(Q)]ej ' <is
aB

(1)

where Cik is the corner tensor, P, Q, u, and O'u are the source point, field point, displacement
vector and stress tensor respectively, U,k and I. ijk are the Kelvin kernel tensors (Rizzo,
1967), and ej are global Cartesian unit vectors. In 2-D problems, oB is the boundary of a
body B, and dS is an infinitesimal boundary length vector.

Let Fk = [Uik(P, Q)O'ij(Q) - I.ijk(P, Q)u;(Q)]ej. Since the divergence ofFk at a field point
Q is zero [see Nagarajan et al. (1994)], i.e.

(2)

everywhere except at the source point P, so after discretizing the boundary oB into n
elements, the BIE (1) can be converted to the following BCM version

"
Cik(P)U;{P) = L [CDfl(En ) -<I>i[) (Etl )]·

(~ J
(3)

Here, En and En are the endpoint nodes of element (t), and <I>k are called the main
potential functions that are determined by solving the following identity that satisfies eqn
(2)

(4)

A numerical implementation of eqn (3) does not require any numerical integration.

2.2. Formulation using the rigid body motion technique
In order to regularize Cauchy singular integrals in eqn (1), a rigid body motion solution

is applied to this equation to produce a new equation

f {Uik(P, Q)O'ij(Q) - I. iJk (P, Q)[u,(Q) - ui(P)]}ej ' dS = O.
as

(5)

Since the new integrand vector Gk = {Uik(P, Q)CTi,(Q) -l:;jk(P, Q)[Ui(Q) - u;(P)]}ej is
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still divergence free (everywhere except at P), eqn (5) can be converted to the following
corresponding BeM version

n

L ['fIi") (En) - 'fIi")(E(dl = 0
(~,

where 'fIk is determined by solving the following identity

(6)

(7)

2.3. Implementation with quadratic boundary elements
Quadratic shape functions that ensure the divergence free property of Fk and Gk are

given by

where k, = - 2(1- 2v), k2 = - 4(1 - v) and v is the Poisson's ratio.
In matrix form, for element (t)

(9)

where {p(O} = <13\0 p\f>, ... , 13\(6)T.

The configuration of a chosen quadratic boundary element is shown in Fig. 1. The
relationship between the physical variable vector {p(O(x, y)} and the artificial variable
vector {p(O} of boundary element ({) are

(10)

A new coordinate system ((, YJ) centered at each source point is introduced. Equation
(9) becomes

(11)

In eqn (11)

U(21-l)

• Traction node

• Displacement node

Fig. I. Quadratic boundary element.
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(12)

where [BJ is a matrix depending only on the coordinates of the source point} (since it arises
from a coordinate transformation from the global system (x,y) to a system (e,1]) centered
atj).

3. DESIGN SENSITIVITY ANALYSIS

3.1. Notation
If the boundary oB of a 2-D body B is discretized into n boundary elements, then there

are n endpoint nodes. Corners are always endpoint nodes. For convenience, let us define

• The boundary oB* as the set of points belonging to the boundary oB except the n
endpoint nodes. In other words

{The whole boundary oB} == {The boundary oB*} u {n endpoint nodes} .

• The domain B* as the set of points belonging to the body B except these n endpoint
nodes, i.e.

{The whole domain B} == {The domain B*} u {n endpoint nodes}.

3.2. Boundary displacement sensitivities at displacement nodes and traction sensitivities at
traction nodes

As seen in the earlier work by Phan et at. (1997a) the numerical implementation of
eqn (6) leads to

(13)

where

(14)

in which ['Putj ] is the matrix associated with the main potential functions 'Pk and is evaluated
at a source point} in the coordinate system (e,1]).

The DSCs under consideration can be found by differentiating eqn (13) with respect
to a design variable b, which is a typical component of a shape design vector b. We have

n * *L ([M(j()]{p«()} + [MWI]{p(tj}) = {O}
(~1

(15)

where <*) denotes the total derivative with respect to b, i.e. <*) = d( )/db and generally,

*( ) =( ).b+ V,( ),;. (16)

It is noted here that in order to avoid any ambiguities that might result from the use
of the above notation for the total derivative of a long expression, the alternative notation
( )* is used in such cases.

In eqn (16), the quantities v, = dx;/db are the components of the design velocity field.
For 2-D cases, X, == x and X 2 == y, thus eqn (I 6) can be expanded to
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* * *( ) =( ),h+( Lx+( ),yY· (17)

This total derivative is totally analogous to the concept of the material derivative (often
taken with respect to time) in continuum mechanics.

* *It can be proved that ['PUO] = [<I>UO] ([<I>ut)] is the matrix associated with the main
potential functions <l>k), therefore, eqn (14) leads to

in which

*[[T(/)]-IJ* = _[T(t)]-I[T(t)][T(t)]-1

*[T(/)] = [T(O ~ + T(t) ~. + T(O 1:+ T(l) y*]gh,nx x gh,ny y gh,x gh,y

(19)

(20)

(21 )

(Tf,/ are the components of matrix [T(O]. nx and ny are the components of the outward
*normal vector to iJB), and the components of matrix <l>Ut) are given by (let z = h+ 10(k-l)

where h = 1, ... , 10)

* * *¢!!() = ¢z(~n,'ln)-¢z(~tl,'ltl)

iJ¢zC~t2,'l(2) * * iJ¢zC~n,'ln) * *
= c~ [x(xn,Yn) -x(xj ,Yi)] + C'l [y(xn·Yn) - y(xi,yJ]

C¢z(~/J,'ltl) * * c¢z(~tl,'ltl) * *- a~ [x(Xtl'Ytl)-X(Xj,y,)]- 0'1 [Y(Xtl,Ytl)-y(xl'yJ]. (22)

The potential functions ¢z are listed in the Appendix of the paper by Phan et al. (1997a)
and the determination of their gradients o¢z/iJ~ and iJ¢z/iJ'l are also addressed in that paper.
It should be noted that iJ¢z/iJ~ and iJ¢z/a'l are singular when Q(Xt,Yt) ~ P(Xj,y), i.e. when

(~,'l) ->(0,0), but in this case [1:(xt ,Yt)-1:(xj,y)] = [y(xt,YI)-Y(xj,y)] ~ OCr), thus,
*unlike [<I>(jl)], the matrix [<I>Ull] is completely regular.

* *The advantage of the equality ['Put)] = [<I>UO] lies in the fact that the evaluation of
* *[<I>(jt)] is more convenient than that of ['P(jO] and the expression (22) can be reused in the

computation of DSCs in the domain B*, as discussed later in this paper.
Displacement continuity across elements is now applied to system (15) which results

in the new system of equations

*[MW]{p} + [M(j)H.p} = {O} (23)

where {p} and Lb} are the degrees-of-freedom (DOF) and their sensitivities, respectively,
on the whole boundary aBo

With 2n source points corresponding to 2n displacement nodes on the boundary iJB in
the numerical implementation using quadratic boundary elements, one gets 2n relations of
the form (23) which are now combined into the following linear system



Boundary contour formulation for design sensitivity analysis

* *[M]{p} + [M]{p} = {O}.

System (24) needs to be split in accordance with the boundary conditions to yield

* * * *[A]{X}+[B]{Y}+[A]{X}+[B]{Y} = {O}

1987

(24)

(25)

where {X} and {Y} contain, respectively, the unknown and known (from boundary con
ditions) physical quantities. It is noted that, at this stage, {X} is known from the solution
of the BCM system [A]{X} = {Z}, where {Z} = [B]{Y}. Furthermore, it is assumed that
tq.e boundary conditions are kept fixed during the change of the design variables, so that
{Y} = {O}. By shifting the known terms to the right-hand side, eqn (25) becomes

or

* * *[A]{X} = - [B]{ Y} - [A]{X}

~Ic

[A]{X} = {W}.

(26)

(27)

This final linear system is very similar to the BCM system [AJ{ X} = {Z}. The matrix
[A] is identical in both equations. Also, it is generally overdetermined, but always consistent
and, therefore, the rectangular system solving algorithm used to solve the usual BCM
equations, can be reused here.

3.3. Displacement sensitivities in the domain B*
The displacement in the domain B* is evaluated from eqn (3) which can now be written

as [see Phan et al. (1997a)]

where}' = 0.5 if the source point P (where displacements are to be computed) is on the
boundary aB* and y = 1 if P is inside the body B.

Thus, displacement sensitivities in the domain B* can be found by differentiating eqn
(28) with respect to a design variable b. That means

11 * * *y{ Uk (b, P)} * = L {[<I>(ptl][Bp]{ P(O} + [<I>(PO][Bp]{P(/l} + [<I>(Ptl][Bp]{p(ll} } (29)
t~1

* *in which [Bp] and [<I>(PO] are computed by using eqns (19) and (22), respectively, and since
{PIll} = [T(O]-I {p(t l} [see (10)], one gets

* *{pro} = [[Tl1l]- 1]* {p(O} + [Tlor 1{p(t)} (30)

*where [[7'0]-1]* is determined by eqn (20) and {iO} is known at this stage after the solution

* * *of (27) because {pro} is derived from {p} which is formed from {X} with {Y} = {O}.

3.4. Stress sensitivity recovery at boundary traction and endpoint nodes
Stresses can be calculated using Hooke's law

(31)

where ). and f1 are Lame constants of the material, bij is the Kronecker delta (= 1 for i = j
and =0 for i t= j).
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The stress sensitivities are detennined by taking the total derivative of eqn (31) with
respect to a design variable b to yield

(32)

In order to evaluate (recover) the stress sensitivities at traction nodes where the traction
sensitivities are available after the solution of eqn (27), their displacement gradient tensor
used in (31) needs to be computed first. It starts from the displacement shape functions (9)
whose displacement gradient tensor is given by

(33)

where m is a field point index for the coordinate system (x,y), i.e. ,I == a/ax and,2 == a/ay.
Finally, the sensitivity of the displacement gradient tensor required by eqn (32) is

derived from eqn (33)

*{{u({)} ,m} * = [[T~) (x, Y)].ml*{p(t)} + [T;;) (x, Y)],m {P(t)} (34)

*in which {P(t)} is evaluated using eqn (30).
The above approach is equivalent to the stress recovery procedure in the usual BEM

[see, for example, Kane and Saigal (1988)], but more straightforward, since the global
displacement shape functions (9) are employed in the BeM. For computing stress sen
sitivities at endpoint nodes, the problem is much easier if the starting point is the dis
placement expression (11). In this case, the displacement gradients at an endpoint node
are, simply:

<u(t) u(t) u(i) u(i) )T _ <iN) R(i) R(t) R(t»T1,1 1,2 2,1 2,2 - 1'2 1'3 1'5 1'6 (35)

where (t) is the element containing this endpoint node so that its coordinates are (~,

'1) = (0, 0). Therefore, the sensitivity of the displacement gradients required by eqn (32) is

* * * *«u\~D* (u\~1)* (un)* (un)*)T = <pr) prj P~) Plfl)T (36)

in which the components on the right-hand side of eqn (36) are derived from the sensitivity
of eqn (12), i.e from

(37)

The above procedure from eqn (32) to eqn (34) is simple and it can be used to compute
the stress sensitivities on the whole boundary aBo Stress sensitivities in the domain B* can
be computed by using the direct formulation addressed in the following section.

3.5. Stress sensitivities in the domain B*
This kind of sensitivity is also computed using eqn (32). To this end, the first step is to

detennine the displacement gradient tensor ui,i on the body B* by taking the partial
derivative of eqn (28) with respect to a source point P [see Phan et al. (l997a)1 to yield

n

y{ uk.M(b, P)} = L ([<I>(PtJ][Bp],M - [<I>(N)],!' [BpJ) {P(i)}
t=1

(38)

where M is a source point index for the coordinate system (x,y), i.e.. 1 == 3/3x(P) and
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.2 == %y(P), and Ii is a field point index for the coordinate system (~, 1]), i.e. in this case
,1 == %e and ,2 == 0/01],

Then, the sensitivity of the displacement gradient tensor is derived from (38) to give

" *y{Uk,M(b, P)} * = L ([<I>(f'()j[Bp],M + [<I>(P()][[BplM]*- [[<I>(PC)LJ*[Bp]
C=I

In eqn (39)

if M = I

(40)

ifM =2

and the components of matrix [[<I>(pt)LJ * are given by

in which

(41)

02¢Z(~t,f/C)[*( .) *( )]---- x xc, Ft -x Xp'YP
0~2 '

02¢z(~t, flc) * *
+ -a[a;J- [Y(Xc,Yc)-Y(Xp,yp)]

02¢z(~t,llt)* *oe Of/ [X(Xt,Yt) -X(Xp,Yp)]

02¢z(¢t, 'It) * *+---,--[Y(Xt,Yt)-Y(Xp,Yp)]
Of/-

if M= I

if M = 2,

(42)

It can be seen from eqn (41) that in order to calculate [[<I>(pt)LJ*, one needs to evaluate
the second-order gradient of the potential functions ¢" i,e, o2¢z/ae, a2¢z/0f/2 and o2¢z/a~of/,
Three points need to be mentioned with regard to the evaluation of displacement and stress
sensitivities on the boundary oB*.

• As demonstrated in the work by Phan et al. (1997a), unlike the conventional
BEM, eqns (28) and (38) are completely regular when they are used to calculate
displacements and stresses on the boundary oB*. This advantage allows one to
derive formulae for the corresponding DSCs directly, as presented above. In the
usual BEM, a similar procedure for computing the stress sensitivities on the bound
ary was presented by Barone and Yang (1988), but the formula involves strongly
singular integrals. An approximate formula was introduced in the above work in
order to overcome the difficulty.

• When the source point P lies on the boundary aB*, the evaluation of matrix [<D(pt)]
has to be carried out carefully by using the approach addressed in the earlier work
by Phan et ai, (1997a).

• The matrix [<D(P()] is singular when the source point P (where the DSCs are to be
computed) approaches an endpoint node. Thus, eqns (29) and (39) are only used
for calculating DSCs in the domain B* where endpoint nodes are excluded. However,
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the displacement and stress sensitivities at endpoint nodes can be obtained from the
equations in Sections 3.2 and 3.4, respectively.

4. NUMERICAL EXAMPLES

Three examples are illustrated in this section. The same material data for all these
examples are as follows: Young's modulus E = 2.5 (in consistent units) and Poisson's ratio
v = 0.3.

4.1. Lame's problem
Consider a thick cylinder subjected to uniform pressure Pi on the inner surface. Let a

and b be the inner and outer radii of the cylinder where a is chosen as the design variable.
The analytical expressions in polar coordinates (r, B), for the displacement and stress

fields of Lame's problem, are available from Timoshenko and Goodier (1970). In the case
of a plane stress state

(43)

in which, the expressions for (Jr and (Je correspond to the upper and lower signs respectively.
By assuming that the geometry changes linearly with the changes of the design variable

a, one gets ~ = (b - r)/(b - a) (Chandra and Mukherjee, 1997). So, the analytical sensitivity
fields are found by taking the total derivative of eqn (43) with respect to the design variable
a (using eqn (16) written in polar coordinates) to give

a(b-r) { b
2
}]+--- I--v-(l+v)-

b-a r2

(44)

Because of the symmetry of the problem, only a quarter of the structure needs to be
modeled as shown in Fig. 2. The mesh consists of equal numbers of quadratic boundary
elements on each segment of the boundary. Also, all the elements on a given segment are
of equal length. In general, a finer mesh ensures better convergence of numerical results,
and especially, in the calculation ofdisplacement sensitivities. Figures 3~6 display numerical
results obtained by using a total of 60 quadratic elements. Excellent agreement with the
analytical solutions is seen. Figures 3 and 4 show numerical results for the DSCs on the
boundary AB (see Fig. 2), in which, the approach presented in Section 3.4 is employed to
recover the stress sensitivities in Fig. 4. Finally, the formulas in Section 3.3 and 3.5 are used
to compute the displacement sensitivities (Fig. 5) and the stress sensitivities (Fig. 6) on the
line segment IJ (see Fig. 2) (domain B*), respectively.

4.2. Kirsch's problem
The second example deals with Kirsch's problem. Figure 7 shows a quarter symmetry

model of a square plate with a central circular hole of radius a subjected to a unit uniaxial
tensile load S. The stress components in polar coordinates (r, B) are given by Timoshenko
and Goodier (1970) as
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Fig. 2. Modeling of Lame's problem.
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Fig. 6. Stress sensitivities along the line lJ (see Fig. 2).
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Here, a is chosen as the design variable. The total derivative of eqn (45) is obtained
using the same approach as in the previous example to yield the stress sensitivity fields
where, with the same linear assumption as in Lame's problem, the geometric sensitivities
are given by

* I-r
r=~-

I-a

~=O

ifr~/l·
ifr> I

(46)

The boundary contour analysis model is made up of 34 quadratic elements: 10 elements
on the edges AB and DE, four elements on the edges BC and CD, and six elements on the
arc EA (see Fig. 7). Due to stress concentrations at the corners A and E, the mesh in this
zone needs to be refined: the density of elements on AB and DE is nonuniform, with short
elements being placed near the points A and E.

The numerical results for the stress sensitivities on the boundary DE, computed from
the approach presented in Section 3.4, are shown in Figs 8 and 9. For the stress sensitivities
in the domain B* (along the line segment GH, see Fig. 7), a state of plane stress is employed
to analytically compute the sensitivity of the von Mises stress. The von Mises stress and its
sensitivity are:

(47)

Analytical and numerical results for this quantity are presented in Fig. 10. This time,
the formulas in Sections 3.3 and 3.5 are used. Reasonably good agreements with the
analytical solutions are observed, even though the analytical solutions exhibit some rapid
changes along the lines DE and GH in Fig. 7.

4.3. Infinite plate with an elliptical hole
Infinite plates with elliptical holes, subjected to uniform biaxial tensions 51 and 52, are

studied in this example. Because of symmetry, only a quarter of a plate needs to be modeled
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Fig. 8. Stress sensitivity ~11 on the edge DE (see Fig. 7).
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Fig. II. Modeling of a plate with an elliptical hole.

as shown in Fig. II. Let a and b be, respectively, the semi-major and semi-minor axes of
the hole. Two cases are considered here:

(a) Sj = 0, S2 = I, a = 2 and b = I in which a is chosen as the design variable. The
same data as in the work of Zhang and Mukherjee (1991) (where the derivative BEM was
employed) are used here for the purpose of comparison. Graded meshes with II elements
each are used on each of the sides AB and DE (due to the stress concentration at A),
uniform discretizations (with four elements each) are used on each of the sides BC and CD,
and 10 elements are placed at equal increments of the eccentric angle ¢ on the elliptical arc
EA.

The focus here is on the tangential ("skin") stress (Is on the hole boundary since it is
often used as a control parameter in shape design. The analytical solution for (I" and its
sensitivity for this case, are presented by Barone and Yang (1988).

Numerical and analytical solutions are compared in Figs 12 and 13. It is quite remark
able that the results given from the BCM are seen to have excellent agreement with the
exact solution on the entire elliptical hole boundary. Furthermore, Fig. 13 also shows that
the present formulation yields better results than those obtained from the BEM by Zhang
and Mukherjee (1991). Only very slight numerical oscillations are seen in this figure
even though fewer quadratic elements (especially only a half of elements on the elliptical
boundary) are employed in this BCM study, as opposed to the previous BEM research. In
this work there are II elements on each of the segments AB and DE and 10 on EA,
compared to 12,14 and 20, respectively, in the BEM work of Zhang and Mukherjee (1991).

(b) S\ = 1, S2 = 0.75 for 13 = b/a = 0.5, 0.75 and 1, respectively. The mesh is the same
as in the previous case, except that 12 elements each are used on each of the sides AB and
DE, and 20 elements are spaced around the arc EA.

The analytical solutions for the stress sensitivities at the points A and E are given by
Barone and Yang (1988)

* 1.5a(I22(A) = --
13

2

ab-1l(E) = 2. (48)
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Table I. Stress sensitivities at A and E (Fig. II) for different values of fJ

a6-22 (A) *arr ll (E)
._----

fJ Analytical BCM BEM Analytical BCM BEM
-~~-_.

0.5 --6 -5.996 -6.158 2 1.992 2.247
0.75 --2.667 -2.662 ~2.983 2 1.992 2.339

I -1.5 -1.506 ~ 1.828 2 1.994 2.540

Table I shows the analytical values of these quantities together with the numerical results
obtained by this work (BCM) as well as by the BEM (Chandra and Mukherjee, 1997). It
should be noted that in the BCM, numerical results for stresses (and thus, stress sensitivities)
are discontinuous at endpoint nodes. Although this is a minor drawback, it makes the
modeling of corners trivial. At endpoint nodes on which the stresses from the analytical
solution are continuous, the discontinuity magnitudes produced by the BCM are minor.
Hence, it is reasonable to use the average values as final outputs. This kind of output is
shown in the Table I as the numerical results from the BCM. Again, these results are in
excellent agreement with the analytical ones, and the performance of the BCM in design
sensitivity analysis appears to be much superior to the BEM in this example.

5. CONCLUSIONS

A formulation for design sensitivity analysis by the BCM for 2-D linear elasticity is
presented in this paper. An implementation is carried out with quadratic boundary elements.

The present formulation deals with the calculation of DSCs throughout the domain
of interest, i.e. on the boundary 8B as well as inside the body B. Since global displacement
and stress shape functions are used in the BCM, the nodal stress sensitivities can be
recovered in a straightforward manner from these functions and from the results obtained
after solving the system (27). For evaluating displacement and stress sensitivities in the
domain B*, direct formulas are developed from the corresponding nonsingular expressions
for displacements and stresses in the domain given in Phan et at. (I 997a).

It is quite remarkable that the accuracy of numerical results for illustrative problems
is seen to be very high. It is felt that the primary reason for this is the complete absence of
numerical integration in the BCM for 2-D problems. Another possible reason is that
the global displacement shape functions satisfy, a priori, the Navier-Cauchy equilibrium
equations (Phan et at., 1997a). Accuracy and efficiency in design sensitivity analyses are
crucial since they lead to faster convergence of iterative procedures in shape optimization.

The DDA developed in this work is advantageous for optimal shape design problems
with few design variables and a large number of constraints. For problems involving many
design variables and fewer constraints, the ASA is more suitable. The ASA, based on the
BCM, is an important subject for future research.
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